Abstract
The development of self-adaptive real-time embedded (RTE) systems is an increasingly hard task due to the growing complexity of both hardware and software and the high variability of the execution environment. Different approaches, platforms, and middleware have been proposed in the field, from low to high abstraction level. However, there is still a lack of generic and reusable designs for self-adaptive RTE systems that fit different system domains, lighten designers’ task, and decrease development cost. In this paper, we propose five design patterns for self-adaptive RTE systems modeling resulting from the generalization of relevant existing adaptation-related works. Combined together, the patterns form the design of an adaptation loop composed of five adaptation modules. The proposed solution offers a modular, reusable, and flexible specification of these modules and enables the separation of concerns. It also permits dealing with concurrency, real-time features, and adaptation cost relative to the adaptation activities. To validate our solution, we applied it to a complex case study, a cross-layer self-adaptive object tracking system, to show patterns utilization and prove the solution benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.