Abstract

Increase in the density of electronic packaging leads to the investigation of highly efficient thermal management systems. The challenge in these micro-systems is to maximize heat transfer per unit volume. In the author's previous work, experimental and computational analysis has been performed on LTCC substrates using embedded silver vias. This novel technique of embedding silver vias along with forced convection resulted in higher heat transfer rates. The present work further investigates into the optimization of this model. A Multi-objective optimization problem has been formulated for the heat transfer in the LTCC model. The Log Mean Temperature Difference (LMTD) method of heat exchangers has been used in the formulation. Optimization is done based on maximization of the total heat transferred and minimization of the coolant pumping power. Structural and thermal design variables are considered to meet the manufacturability and energy requirements. Demanded pressure loss and volume of the silver metal are used as constraints. The classical optimization technique Sequential Quadratic Programming (SQP) is used to solve the micro-heat exchanger problem. The optimal design is presented and sensitivity analysis results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.