Abstract

The design optimization of buckling behavior is studied for piezoelectric intelligent truss structures. First, on the basis of mechanical–electric coupling equation and considering electric load and mechanical loads together, the finite element model of piezoelectric trusses has been built up. Then, the computational formula has been derived for the design sensitivities of critical buckling load factor of the structure with respect to size and shape design variables. The electric voltage is taken as a new kind of design variable and the calculation method of critical load buckling factor with respect to the electric voltage variables is proposed. Particularly, the variations of the loads and pre-buckling inner forces with design variables have been accounted for. Finally, the sequential linear programming algorithm is employed to solve the optimization problem, and a new method of controlling structural buckling stability by optimizing the voltages of piezoelectric active bars is proposed. Numerical examples given in the paper have demonstrated the effectiveness of the methods presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.