Abstract

Fiber-reinforced composite conical shells with given geometry and material properties are optimized for maximum fundamental frequency. The shells are assumed to be built using an advanced tow-placement machine, which allows in-plane steering of the fibers, resulting in a variable-stiffness structure. In this paper, different path definitions for variable-stiffness shells are provided and used to optimize conical shells for maximum fundamental frequency, while manufacturing constraints that apply for tow placement are taken into account in the process. The influence of manufacturing constraints on the performance is shown; and improvements of variable-stiffness conical shells over conventional, constant-stiffness shells are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.