Abstract

This paper focuses on the design of track-type climbing robots using dry adhesives to generate tractive forces between the robot and climbing surface to maintain equilibrium while in motion. When considering the design of these climbing robots, there are two primary elements of focus: the adhesive mechanisms at the track-surface interface and the distribution of these forces over the full contact surface (the tracks). This paper will present an approach to integrate a generic adhesion model and a track suspension system into a complete model that can be used to design general climbing robot systems utilizing a broad range of dry adhesive technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.