Abstract

Abstract. Surtsey, the youngest of the islands of Vestmannaeyjar, is an oceanic volcano created by explosive basaltic eruptions during 1963–1967 off the southern coast of Iceland. The subsurface deposits of the volcano were first sampled by a cored borehole in 1979. In summer 2017, three cored boreholes were drilled through the active hydrothermal system of the volcano by the International Continental Scientific Drilling Program (ICDP) SUSTAIN Expedition 5059. These cores are expected to provide the first glimpse of microbial life in very young and native basaltic tuff of the oceanic crust. To reduce the contamination of the subsurface environment, seawater circulating fluid was filtered and passed through two UV-sterilizing treatments. One of the boreholes has been equipped with a subsurface observatory dedicated in situ experiments for monitoring water–rock interactions and microbial processes in sterile, artificial basaltic glass and in olivine granules. With temperatures ranging from 25 to 125 ∘C, the subsurface observatory provides a precise geothermal window into an active hydrothermal system and thus represents an exceptional natural laboratory for studying fluid–rock–microbe interactions at different temperature regimes and facilitates experimental validation of active submarine microbial processes at the limit of functional life, about 121 ∘C. Comparisons with the 1979 and 2019 drill cores will provide time-lapse observations of hydrothermal processes over a 50-year timescale. Here, we present the technical design of the observatory and the incubation chamber experiments deployed from September 2017 to summer 2019.

Highlights

  • Surtsey volcano forms the southernmost expression of Vestmannaeyjar, an oceanic archipelago created by basaltic eruptions in the offshore extension of the eastern Icelandic rift zone (Jakobsson et al, 2009)

  • The Surtsey subsurface observatory, by contrast, provides relatively straightforward access to an exceptionally young and pristine environment that records the initiation of subsurface microbial life in basaltic tephra in a broad range of temperatures, 25–125 ◦C, measured in the parallel 1979 (SE-01) borehole in 2017 (Fig. 1b), and varying hydrothermal fluid compositions (Jackson et al, 2019)

  • Energy sources thought to sustain this biosphere could be provided through both chemical and physical processes occurring when volcanic rocks, which make up the majority of the hydrologically active oceanic crust, in

Read more

Summary

Introduction

Surtsey volcano forms the southernmost expression of Vestmannaeyjar, an oceanic archipelago created by basaltic eruptions in the offshore extension of the eastern Icelandic rift zone (Jakobsson et al, 2009). The Surtsey subsurface observatory, by contrast, provides relatively straightforward access to an exceptionally young and pristine environment that records the initiation of subsurface microbial life in basaltic tephra in a broad range of temperatures, 25–125 ◦C, measured in the parallel 1979 (SE-01) borehole in 2017 (Fig. 1b), and varying hydrothermal fluid compositions (Jackson et al, 2019). The time-lapse drill cores obtained in 1979 and 2017 and their associated fluids provide a first glimpse of subsurface marine microbial life in oceanic basalt. The steep temperature gradients in the young hydrothermal system – including a section that in 1979 exceeded the known temperature limit of life, 121 ◦C (Fig. 1b; Takai et al, 2008) – offer a unique opportunity to assess temperature dependency of microbial activity in the deep biosphere hosted by oceanic basalt. Energy sources thought to sustain this biosphere could be provided through both chemical and physical processes occurring when volcanic rocks, which make up the majority of the hydrologically active oceanic crust, in-

Surtsey subsurface observatory design
Incubation experiments
Outlook and perspectives

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.