Abstract
The output acoustic energy of a capacitive micromachined ultrasonic transducer (CMUT) can be enhanced by adjusting its membrane structure. In this paper three dissimilar membranes shapes of CMUT: circular, rectangular and hexagonal, were aimed and 3D finite element method simulated using adaptive meshing technique. The displacement as well as strain and stress outputs for a single membrane and an array of four membranes on a single substrate were obtained. The simulated results are supported by analytical modeling. A static bias of 40 V and a signal of amplitude 100 mV are employed. A pressure of 8603.98 N/m2 resulting in a force of 16.894 µN was applied at the membrane. Fixtures were provided on every possible face of the structure except the face 1 (membrane). The outcomes showed that the membrane displacement is highest for a circular geometry under same uniform pressure and area of vibration. Moreover as the distance between the elemental membranes increases the displacement decreases for circular and hexagonal membranes while the reverse behavior is observed for rectangular membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions on Electrical and Electronic Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.