Abstract

The strut-and-tie method is a rational approach to structural concrete design that results in a uniform and consistent design philosophy. A strut-and-tie model has been developed to model the punching-shear behaviour of thick concrete plates. This model provides a quick and simple approach to check the punching-shear behaviour. Thick concrete slabs (250–500 mm) without shear reinforcement can exhibit brittle shear failure under a central force and an unbalanced moment. Shear reinforcement has proven to be very effective in preventing such failures. The developed strut-and-tie model has also been used to evaluate the minimum shear reinforcement required to prevent brittle shear failure of two-way slabs in the vicinity of concentrated loads. The strut-and-tie model for symmetric punching consists of a “bottle-shaped” compressive zone in the upper section of the slab depth, leading to a “rectangular-stress” compressive zone in the lower section of the slab depth. Inclined shear cracking develops in the bottle-shaped zone prior to failure in the lower zone. Cracking in the bottle-shaped zone is related to the splitting tensile strength of concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.