Abstract

A combinatorial hydrothermal reaction has been used to prepare pure and additive (Sb, Cu, Nb, Pd, and Ni)-loaded In2O3 hollow spheres for gas sensor applications. The operation of Pd- and Cu-loaded In2O3 sensors at 371 °C leads to selective H2S detection. Selective detection of CO and NH3 was achieved by the Ni-In2O3 sensor at sensing temperatures of 371 and 440 °C, respectively. The gas responses of six different sensors to NH3, H2S, H2, CO and CH4 produced unique gas sensing patterns that can be used for the artificial recognition of these gases.

Highlights

  • Chemoresistive n-type oxide semiconductors such as SnO2, ZnO, TiO2, In2O3, and WO3 have been widely used to detect explosive, toxic and harmful gases [1,2]

  • Various metal or metal oxide additives are loaded onto In2O3 hollow spheres in a combinatorial manner by one-pot hydrothermal reaction of a solution containing glucose, In-precursors, and additive-precursors with subsequent heat treatment, and the gas responses to CH4, NH3, H2, CO, and H2S have been measured

  • Pure and additive-loaded In2O3 hollow spheres were prepared by glucose-mediated hydrothermal reaction

Read more

Summary

Introduction

Chemoresistive n-type oxide semiconductors such as SnO2, ZnO, TiO2, In2O3, and WO3 have been widely used to detect explosive, toxic and harmful gases [1,2]. Among various template-based synthetic routes, hydrothermal reaction of a solution containing a metal precursor and glucose or sucrose provides a simple, one-pot method to prepare metal-precursor-coated carbon spheres [27,28]. Oxide hollow structures prepared by glucose- or sucrose-mediated hydrothermal reaction showed high gas responses [28,30]. In this contribution, various metal or metal oxide additives are loaded onto In2O3 hollow spheres in a combinatorial manner by one-pot hydrothermal reaction of a solution containing glucose, In-precursors, and additive-precursors with subsequent heat treatment, and the gas responses to CH4, NH3, H2, CO, and H2S have been measured. The main focus of the study is directed at the high-throughput screening of selective gas sensors by combinatorial control of oxide additives and sensor temperatures

Experimental Section
Results and Discussion
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.