Abstract

For a research aircraft, "conventional" control laws (CLs) are implemented on a "baseline" flight computer (FC) while research CLs are typically housed on a dedicated research computer. Therefore, for an experimental aircraft used to test specific fault tolerant flight control systems, a safety logic scheme is needed to ensure a safe transition from conventional to research CLs (while at nominal conditions) as well as from research CLs at nominal conditions to conditions with "simulated" failures on specific control surfaces. This paper describes the design of such a safety scheme for the NASA Intelligent Flight Control System (IFCS) F-15 Program. The goals of the IFCS F-15 program are to investigate the performance of a set of fault tolerant CLs based on the use of dynamic inversion with neural augmentation. The different transitions are monitored using information relative to flight conditions and controller-related performance criteria. The testing of the scheme is performed with a Simulink-based flight simulation code and interface developed at West Virginia University for the NASA IFCS F-15 aircraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.