Abstract

The design of a power pool scheme for demand-side management of co-located banks in Owerri metropolis, Nigeria has been carried out in this work. The paper addressed the problem of matching instantaneous load demand with appropriate generator capacities which results from dynamic nature of small and medium scale industrial load, such as co-located banks. It also aimed at proffering solutions to health and environmental problems associated with use of scattered single generators per firm. A model for interconnection of generators and loads in a pool structure was developed to form a ring network, analogous to a typical power system. One of the generators in the pool was chosen as the slack bus and the other generators and load buses were arranged in the power pool arrangement such that Newton-Raphson’s method could be applied in load flow analysis. With this modeling and application of appropriate schedule, a cooperative pooling model was developed such that only the exact generating capacities were deployed. The proposed model was simulated by paralleling three 200kVA generator units in a synchronized ring network to serve the entire five banks. Results from the load flow analysis showed that the per unit voltage magnitudes at buses 1, 2, 3, 4 and 5 were 1.000, 0.997, 1.000, 0.998 and 1.000 respectively, while voltage mismatch angles (degree) were also gotten as 0.000, 0.003, 0.024, 0.060 and 0.086 respectively for the buses 1 to 5. From the cost benefit analysis carried out, the benefit-cost ratio (BCR) of 1.965 was calculated, which showed that this project will be very beneficial to the co-operating banks. Scheduling the operations of the three generators using mathematical permutation and combination model showed that the total man-hour of the plant operators is reduced by 40%. Also, applying the greenhouse gases emissions cost model it was found that the carbon footprints i.e. greenhouse cost for the interconnected network is reduced by 40%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.