Abstract

One of the challenges in tissue engineering scaffold design is the realization of structures with a pre-defined multi-scaled porous network. Along this line, this study aimed at the design of porous scaffolds with controlled porosity and pore size distribution from blends of poly(epsilon-caprolactone) (PCL) and thermoplastic gelatin (TG), a thermoplastic natural material obtained by de novo thermoplasticization of gelatin. PCL/TG blends with composition in the range from 40/60 to 60/40 (w/w) were prepared by melt mixing process. The multi-phase microstructures of these blends were analyzed by scanning electron microscopy and dynamic mechanical analysis. Furthermore, in order to prepare open porous scaffolds for cell culture and tissue replacement, the TG and PCL were selectively extracted from the blends by the appropriate combination of solvent and extraction parameters. Finally, with the proposed combination of gas foaming and selective polymer extraction technologies, PCL and TG porous materials with multi-scaled and highly interconnected porosities were designed as novel scaffolds for new-tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.