Abstract

The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φλ/8, Φλ/4) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.