Abstract

Recent breakthroughs in wearable robots, such as exoskeleton robots with soft actuators and soft exosuits, have enabled the use of safe and comfortable movement assistance. However, modeling and identification methods for soft actuators used in wearable robots have yet to be sufficiently explored. In this study, we propose a novel approach for obtaining accurate soft actuator models through the design of physical user–robot interactions for wearable robots, in which the user applies external forces to the robot. To obtain an accurate soft actuator model from the limited amount of data acquired through an interaction, we leverage an active learning framework based on Gaussian process regression. We conducted experiments using a two-degree-of-freedom upper-limb exoskeleton robot with four pneumatic artificial muscles (PAMs). Experimental results showed that physical interactions between the exoskeleton robot and the user were successfully designed to allow PAM models to be identified. Furthermore, we found that data acquired through an interaction could result in more accurate soft actuator models for the exoskeleton robots than data acquired without a physical interaction between the exoskeleton robot and the user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.