Abstract

Abstract Small gas foil bearings (FBs) with shaft diameter below 25 mm can find many applications in air compressors for fuel cells, electrical turbo chargers, small unmanned air vehicles, turbo alternators, etc. These small machines are characterized by very light load to the radial FBs, and thus rotordynamics stability is more challenging than load capacity. However, a main challenge of gas foil thrust bearings (GFTBs) is how to increase the load capacity, and the challenge remains the same regardless of the size. In previous publications on experimental studies on GFTBs, the measured load capacity is well below the prediction due to challenges in testing as well as manufacturing of GFTBs. Difficulty in achieving the design load capacity often leads to increasing the bearing size in actual applications with penalty of higher power loss. This paper presents design feature of a novel GFTB with outer diameter of 38 mm and static performance up to 155 krpm under external load of 75 N using a high-speed test rig. The 38 mm GFTB presented in this paper is a three-layered structure for easy design and manufacturing, and the unique design feature allows easy scale down and scale up to different sizes. Reynolds equations for compressible gas and the two-dimensional thin plate model were adopted for fluid–structure interaction simulation to predict load capacity and power loss of the GFTB. The predicted power loss and load capacity agree well with the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.