Abstract

Normalization is a crucial requirement for the effectiveness of multivariable control system design within the Characteristic Locus Method. Previous work addresses this problem by solving an optimization problem formulated in order to increase normality; its formulation, however, do not consider the closed-loop system robustness with respect to perturbations at the plant input. In this paper a different approach to the design of normalizing precompensators will be proposed. It is based on the minimization of a cost function representing the measure of misalignment between the output and input principal directions of the precompensated system. The main advantage of this approach is that, since normalization is obtained via alignment, the sensitivity of the characteristic loci to perturbations at both the plant input and output is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.