Abstract

Gold catalysts, supported on mechanochemically activated ceria-alumina, nonpromoted and promoted by molybdena, were studied in the reaction of complete benzene oxidation. Higher activity of Au-Mo catalysts was established in the low temperature region, while high temperatures samples, containing only gold exhibit higher benzene conversion and the cross-point of the curves depends on alumina content. The addition of alumina by mechanochemical treatment leads to a surface modification of ceria, e.g. oxygen vacancies are formed prevailing on the ceria surface. The molybdena loading leads to the oxygen vacancies occupation. The calculated hydrogen consumption and the enhanced reduction of ceria surface layers in general correlate with the activities of the catalysts. The XPS data supported the role of Ce3+ and partially charged gold particles in the formation of the complex AuV0Ce3+ as the active site for the redox processes. The modification of ceria in the presence of gold and the formation of oxygen vacancies in close contact with Ce3+ ensure the enhanced electron transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.