Abstract

The development of procedures based on fractional calculus is an emerging research area. This paper presents a new perspective regarding the fractional least mean square (FLMS) adaptive algorithm, called multi innovation FLMS (MIFLMS). We verify that the iterative parameter adaptation mechanism of the FLMS uses merely the current error value (scalar innovation). The MIFLMS expands the scalar innovation into a vector innovation (error vector) by considering data over a fixed window at each iteration. Therefore, the MIFLMS yields better convergence speed than the standard FLMS by increasing the length of innovation vector. The superior performance of the MIFLMS is verified through parameter identification problem of input nonlinear systems. The statistical performance indices based on multiple independent trials confirm the consistent accuracy and reliability of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.