Abstract

The design of controllers for nonlinear systems has always been a challenge due to their complex dynamic structures that have ill-defined models with inherent uncertainties. This article investigates the implementation of PID controllers, using a gain scheduling technique that allows dynamic tuning of their gains. The methodology introduced in this paper is model-based, where sub-models for the system to be controlled are created, based on the output, as a scheduling parameter. Dominant dynamics of the nonlinear models are encapsulated into a linearized version that has a dynamic nature to effectively cover the whole range of operation. A pole-placement technique is used to design the PID dynamic gain. The proposed technique is shown to be effectively applied to robotic manipulators, process industry, and automotives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.