Abstract

Antimicrobial peptides (AMPs), which are produced by multicellular organisms as a defense mechanism against competing pathogenic microbes, appear to be excellent candidates for the development of novel antimicrobial agents. Amphipathicity is traditionally believed to be crucial to the de novo design or systematic optimization of AMPs. In this study, we designed a series of short α-helical AMPs with imperfect amphipathicity to augment the arsenal of strategies and to gain further insights into their antimicrobial and hemolytic activity. These imperfectly amphipathic α-helical AMPs were designed by replacing the paired charged amino acid residues on the polar face of an amphipathic peptide with tryptophan residues on the basis of α-helical protein folding principles. PRW4, an imperfectly amphipathic α-helical AMP with hydrogen bonds formed by paired tryptophan residues, was observed to be more selective towards bacterial cells than toward human red blood cells. PRW4 was also effective against Gram-negative and Gram-positive bacteria, and fluorescence spectroscopy, flow cytometry, scanning electron microscopy and transmission electron microscopy indicated that PRW4 killed microbial cells by permeabilizing the cell membrane and damaging their membrane integrity. Therefore, disruptive amphipathicity has excellent potential for the rational design and optimization of AMPs with promising antimicrobial activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.