Abstract
In order to meet the working performance of large plant protection machine and according to the actual working requirements, this paper proposes a design of hydrostatic chassis drive system for a large plant protection machine. The purpose of this study is to realize the anti-slip rotation function of the plant protection machine and improve the driving stability through the combination of a hydraulic drive system and shunt valve. In this study, a closed circuit with a single pump and four motors is used, and a diverter valve is used to prevent the wheels from skidding during the driving of the plant protection machine. The parameters of the main hydraulic components of the hydraulic drive system were firstly calculated and selected; then the AMESim software was used to model and simulate the hydraulic drive system. Finally, a test platform with anti-skid function is designed and built, and the test results are as follows: when the diverter valve is closed, the plant protection machine drives at 3 km/h and 6 km/h respectively, and the skid rate is 3.79% and 6.17%; when the diverter valve is open, the plant protection machine drives at 3 km/h and 6 km/h respectively, and the skid rate is 1.33% and 2.70% respectively. The test results show that the hydraulic chassis of the plant protection machine designed in this study has good driving stability and can effectively reduce the slip rate of the plant protection machine in the process of driving in the field, which provides an effective theoretical support for the design of the driving system of the hydraulic chassis of the plant protection machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.