Abstract

This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference. The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass. First, two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system. Then, fault detection can effectively identify the fault sensor and fault source. Finally, a fault-tolerant algorithm is used to isolate and alarm the faulty sensor. The program can effectively detect the constant magnetic field interference, change the magnetic field interference and small transient magnetic field interference, and conduct fault tolerance control in time to ensure the heading accuracy of the system. Test verification shows that the system is practical and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.