Abstract

Integration of the driver’s steering input together with the four-wheel steering system (4WS) in order to improve the vehicle’s dynamic behavior with respect to yaw rate and body sideslip angle is possible with intelligent vehicle dynamics control systems. The goal of this study is to develop a fuzzy logic controller for this purpose. In the first stage of the study, a three-degree of freedom nonlinear vehicle model including roll dynamics is developed. The Magic Formula is applied in order to formulate the nonlinear characteristics of the tires. In the design of the fuzzy logic controller, a two-dimensional rule table is created based on the error and on the change in the error of sideslip angle, which is to be minimized. Fuzzy logic controlled model is then compared with front wheel steering vehicle and the vehicles having different control strategies that have previously been studied in literature. Simulations indicate that fuzzy logic controlled vehicle can provide zero body sideslip angle in transient motion and quick response in terms of yaw rate during steady state cornering and lane change maneuvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.