Abstract

This communication demonstrates a method to design filtering antennas by using the filtering-radiating patch (FRP). The so-called FRP is a structure of a rectangular patch etched with slots. It inherits the radiation performance of conventional patch antennas, and more importantly, introduces filtering feature with a radiation null at either the upper or lower band edge of radiation efficiency curve. The frequencies of radiation nulls are easy to control. Based on the FRP, a novel filtering antenna is proposed. Two radiation nulls are realized at both band edges of the antenna efficiency curve, leading to a sharp band skirt and good selectivity in the boresight gain response. The locations of the two radiation nulls can be flexibly controlled by the lengths of slots. A prototype is fabricated and tested. The measured results show an impedance matching bandwidth of 7% with a center frequency of 5.24 GHz, two radiation nulls at 4.7 and 5.85 GHz, respectively, a realized gain of 6.6 dBi, the cross-polarization rejection larger than 23.4 dB, and the front-to-back ratio better than 15 dB. The presented method demonstrates the capability of not only achieving good filtering-radiating performances but also possessing very simple structures by only etching slots on the patch of a conventional microstrip antenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.