Abstract

The objectives of this paper are to advance dynamic inversion (DI) and explicit model following (EMF) flight control laws for quadrotor unmanned aerial systems (UAS) and to develop an efficient strategy to compute the stability and performance robustness statistics of such control laws given parametric model uncertainty. For this purpose, a parametric model of a quadrotor is identified from flight-test data. The identified model is validated both in frequency and time domains. Next, DI and EMF flight control laws are designed for both inner attitude and outer velocity loops. Finally, a novel approach based on an unscented transform is used to evaluate the statistics of the controller's performance based on the statistics of the uncertain model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.