Abstract

The influence of defect-core on the birefringence and confinement losses of rectangular-lattice photonic crystal fibers are investigated numerically by applying the multipole method. Numerical results illustrate that the birefringence in such fibers is determined not only by the arrangement of air holes in the cladding but also the shape of the core. It is found that asymmetry of the core represented by its rectangular shape implies a higher effective index of the mode that is parallel with the longer side of the rectangle, whereas the anisotropic rectangular-lattice cladding gives rise to just the opposite effect and thus the resulting birefringence can be controlled by a proper combinations of both mechanisms. In particular, effect of the asymmetry of the core on the birefringence is dominant for shorter wavelength. Increased birefringence and reduced confinement loss can be achieved, if we form the core by the omission of several air holes in a row to reduce its negative effect on the birefringence. On the other hand, when asymmetry is increased in the other direction, a negative birefringence at shorter wavelength can be achieved. This occurs due to the fact that asymmetry of the core at higher frequencies overcomes the effect of the asymmetric cladding. As a result, its possible to achieve zero birefringence in anisotropic cladding photonic crystal fiber with an asymmetric core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.