Abstract
Abstract We synthesized a “cyborg protein,” wherein a synthetic molecule partially substitutes the main peptide chain by linking two protein domains with a synthetic oligomer. Green fluorescent protein (GFP) served as the model for constructing the cyborg proteins. We prepared circularly permuted GFP (cpGFP) with new termini between β10 and β11, where the original N- and C-termini were linked by a cleavable peptide loop. The cyborg GFP was constructed from cpGFP by linking the β10 and β11 with oligo(ethylene glycol) using maleimide-cysteine couplings, followed by the enzymatic cleavage of the N- and C-termini linking loop by thrombin. With the help of machine learning, we were able to obtain the cpGFP mutants that significantly alter the fluorescence activity (53% increase) by thrombin treatment, which splits cpGFP into two fragments (fragmented-GFP), and by heat shock. When the cyborg GFP was constructed using this mutant, the fluorescence intensity increased by 13% after heat treatment, similar to cpGFP (33% increase), and the behavior was significantly different from that of the fragmented-GFP. This result suggests the possibility that the oligo(ethylene glycol) chain in the cyborg protein plays a similar role to the peptide in the main chain of the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.