Abstract

A time-dependent numerical model of a dysprosium-doped ZBLAN glass fiber is developed in order to design a pulsed laser emitting at about 3 $\mu \text{m}$ wavelength, by employing an in-band pumping scheme. A number of design parameters are changed to optimize the laser performance. Gain-switching regime with an output signal peak power close to 59 W and a full width at half maximum pulse duration shorter than 184 ns is simulated for a fiber with dopant concentration of 2000 ppm, by employing a pulsed input pump with a peak power of 5 W and a repetition rate of 100 kHz at the wavelength of 2.8 $\mu \text{m}$ . These characteristics are very promising and theoretically predict the feasibility of a laser, which can find application in many areas such as chemical, biological, and environmental monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.