Abstract

Metal- and nitrogen-doped carbon (M-N-C) materials as a unique class of single-atom catalysts (SACs) have increasingly attracted attention as the replacement of platinum for the hydrogen evolution reaction (HER); however, their employment as HER electrodes at high current densities of industrial level remains a grand challenge. Herein, an aligned porous carbon film embedded with single-atom Co-N-C sites of exceptional activity and stability at high current densities is designed. Within the film, the atomic CoNx moieties exhibit high intrinsic activity, while the multiscale porosity of the carbon frameworks with vertically aligned microchannels afford facilitated mass transfer under the conditions of high production rate and ultrathick electrodes. Moreover, the superwetting properties of the film promote electrolyte wetting and ensure the timely removal of the evolving H2 gas bubbles. The as-designed film can work as an efficient HER electrode to deliver 500 and 1000mA cm-2 in acid at overpotentials of 272 and 343mV, respectively, and can operate uninterruptedly and stably at 1000mA cm-2 for at least 32 h under static conditions. These findings pave the road toward the rational design of SACs with improved activity and stability at high current densities in gas-evolving electrocatalytic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.