Abstract

The state-of-the-art field of bio-inspired soft robotics promises emergent and inventive methods to utilize robots made from soft, flexible materials in a wide range of applications. This research is on-trend, describes an advancement in the design of a wearable robotic glove to assist people suffering from hand impairments regain their ability to control their environment. This study built a streamlined, inexpensive electro-pneumatic system that can work with small and simple actuators to increase for finger movement flexibility. The use of pneumatic pressure to stretch and bend the actuators through inflation or deformation of elastic chambers, making this glove work effectively. The designed pneumatic device consists of STM32F101C8T6 microcontroller combined with a series of pumps and a matrix of solenoid valves. Along with the electro-pneumatic system, we also applied it to develop a wearable robotic glove (made from Ecoflex™ rubbers) which is suitable for the pneumatic system by the series of experiments that mechanically characterize the actuators. The results gathered in this study validate the feasibility of the first prototype of our soft robotic glove as an effective device to assist hand function in individuals. However, performance and ease of use of the system should be improved further in future development phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.