Abstract

The quasi-optical mode converter for a frequency step-tunable gyrotron which consists of a dimpled-wall antenna (Denisov-type launcher) and a beam-forming mirror system has been optimized for 9 modes from TE17,6 at 105 GHz to TE23,8 at 143 GHz. The first mirror is a large quasi-elliptical focusing one; the second and third are phase-correcting mirrors with a non-quadratic shape of the surface. The results of calculations show that for these modes the Denisov-type launcher has a well-focused beam with low diffraction losses, and the radiation pattern presents an almost identical field shape for all modes considered. A multi-mode optimization of the phase-correcting mirrors with two different methods has been tested. The simulations show that the phase-correcting mirrors can be used for broadband operation in the frequency range from 105 GHz up to 143 GHz in the various design modes. This quasi-optical mode converter can achieve efficiencies of 94%-98% for converting the rotating high-order cylindrical cavity modes into the usable fundamental Gaussian mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.