Abstract

Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.