Abstract

Frequency diversity is used to reduce the effect of destructive fading, so as to improve the communication quality, by passing the information symbols through multiple independently faded paths, and ensure that reliable communication is possible as long as one of these paths is strong. In this paper a multiorder orthogonal frequency division multiplexing (OFDM) frequency diversity approach using properties of order theory and Hamming distance is proposed. The frequency diversity is obtained by specifying proper correlations among the transmitted symbols. As subchannels experience independent fading, at least one of the symbols may have robust signal, which can be used by the receiver to detect other symbols. Considering bit error rate (BER) performance, power consumption, bandwidth utilization, and practical implementation expense, simulation results show that the proposed approach outperforms other OFDM diversity techniques, such as Maximal Ratio Combination (MRC) and Space Frequency Block Coding (SFBC).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.