Abstract

Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm(2). Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.