Abstract

This paper deals with the development of a magnetic lead screw (MLS) for wave energy conversion. Initially, a brief state of the art regarding linear permanent-magnet generators and MLSs is given, leading to an introduction of the MLS and a presentation of the results from a finite-element analysis used to find the magnetic forces. Furthermore, the force per magnet surface area measure is presented as a better alternative to the force density measure, which is often used for linear magnetic devices. Based on this, the overall design of a 500-kN MLS is presented focusing on the bearing supports used to compensate for the magnetic attraction forces and the resulting deflection of the rotor. In addition, in order to avoid some of the assembling-related disadvantages of using surface-mounted magnets, an embedded-magnet topology is proposed. To demonstrate the technology, a scaled 17-kN MLS is presented together with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.