Abstract

Phosphonate monoesters are atypical linkers for metal-organic frameworks, but they offer potentially added versatility. In this work, a bulky isopropyl ester is used to direct the topology of a copper(II) network from a dense to an open framework, CALF-30. CALF-30 shows no adsorption of N2 or CH4 however, using CO2 sorption, CALF-30 was found to have a Langmuir surface area of over 300 m(2)/g and to be stable to conditions of 90% relative humidity at 353 K owing to kinetic shielding of the framework by the phosphonate ester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.