Abstract

We present a detailed design study for a novel solid-state focal plane array of silicon avalanche photodiodes (APDs) using an advanced silicon-on-sapphire substrate incorporating an antireflective bilayer consisting of crystalline aluminum nitride (AlN) and amorphous, non-stoichiometric, silicon rich, silicon nitride (a-SiNX<1.33) between the silicon and sapphire. The substrate supports electrical and optical integration of a nearly 100% quantum efficiency, silicon APD capable of operating with wide dynamic range in dual linear or Geiger-mode, with a gallium nitride (GaN) laser diode in each pixel. The APD device and epitaxially grown GaN laser are fabricated within a crystallographically etched silicon mesa. The high resolution 27 μm emitter-detector pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs), with passive and active imaging capability in a single FPA. The square 27 μm emitter-detector pixel achieves SNR>10 in active detection mode for Lambert surfaces at 20,000 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.