Abstract

Since real-time variable bit rate (VBR) traffic is inherently bursty, dynamic bandwidth allocation is necessary for ATM streams that carry VBR traffic. In order to provide quality-of-services (QoS) guarantees and to reduce the computational complexity, an hybrid of guaranteed and dynamic adaptive allocation scheme requires to be implemented. Typical dynamic allocations to competing streams are done in the form of linear proportions to the bandwidth requirements. We show that during temporary link congestion such proportional arrangements can give rise to unequal queue growth and, subsequently, degraded QoS. This is found to be true even for streams that belong to the same VBR class and share identical long term traffic characteristics and QoS requirements. In this paper, four allocation algorithms are presented and analyzed in terms of their fairness and QoS potential for real-time VBR traffic. We propose and show that a novel allocation strategy, termed Minmax, solves the mentioned problem of unfairness within a class. By maintaining a fair distribution of buffer length across the streams of a class, the proposed policy can achieve better and fairer QoS performance compared to the traditional methods. We present analytical results, proofs and a simulation study of the described algorithms. Four allocation policies for handling MPEG VBR video streams are simulated in the context of a wireless ATM (WATM) medium access control. The results show that in certain scenarios, the Minmax strategy can reduce losses by an order of magnitude, while decreasing delays substantially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.