Abstract

Abstract The proposed Compact Intense Fast NEutron Facility (CIFNEF) will have a wide range of applications, including the investigation of the exotic structure of neutron-rich nuclei, data for the nuclear fission , and the simulation of the neutron field in a star. To satisfy aims of producing high-intensity fast neutrons and forward neutrons with very low environmental background, the CIFNEF linac should have the capacity of accelerating continuous wave (CW) deuteron (D + ), hydrogen ( H 2 + ) and lithium (7Li 3 + ) beams to 2.5 MeV/u with maximum beam currents of 10 mA, 5 mA and 10 uA, respectively. Based on the above requirements, we proposed a novel compact linac using a combination of RFQ and DTL structures. The dynamics of RFQ and DTL are completed to meet all requirements and start-to-end simulation results show that the three ion species can be accelerated to the final energy with transmission efficiency above 99% as well as good beam quality with lower emittance growth. In addition, we performed error sensitivity analysis and combined error study to evaluate the error tolerance limits of the obtained design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.