Abstract
Animals and plants have numerous active protections for adapting to the complex and severe living environments, providing endless inspiration for extending the service life of materials and machines. Conch, a marine animal living near the coast and chronically suffering from the erosion of sand in water, has adapted to the condition through its anti-erosion conch shell. Romanesco broccoli, a plant whose inflorescence is self-similar in character, has a natural fractal bud’s form. Coupling the convex domes on the conch shell and the fractal structure of Romanesco broccoli, a novel valve core structure of a water hydraulic valve was designed in this paper to improve the particle erosion resistance and valve core’s service life. Three models were built to compare the effect among the normal structure, bionic structure, and multi-source coupling bionic structures, and were coined using 3D printing technology. A 3D printed water hydraulic valve was manufactured to simulate the working condition of a valve core under sand erosion in water flow, and capture the experimental videos of the two-phase flow. Furthermore, based on the water hydraulic platform and one-camera-six-mirror 3D imaging subsystem, the experiment system was established and used to compare the performance of the three different valve cores. As a result, the results showed that the coupling bionic structure could effectively improve the anti-erosion property of the valve core and protect the sealing face on the valve core from wear. This paper presents a novel way of combining advantages from both animal (function bionic) and plant (shape bionic) in one component design.
Highlights
In fluent field, erosion is the main reason for failure in important machine parts
This paper presents a design case of using multi-source coupling bionic based on the unit bionics
The bionic structure on the valve core is aimed at improving the performance of sand erosion resistance
Summary
Erosion is the main reason for failure in important machine parts. Solid particles, such as sand, with a fluid medium move, impact a machine parts’ surface. To resist the erosion of components, using materials with high strength, stiffness, and toughness to replace standard material is common practice [4,5]. Researchers control a flow pattern by these structures so as to change the situation in which contact between solid particles and surfaces occur, thereby protecting the materials [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.