Abstract

This paper presents the design, modeling and testing of an active single axis solar tracker. The compactness of the proposed solar tracker enables it to be mounted onto the wall. The solar irradiance is detected by two light-dependent resistor (LDR) sensors that are located on the surface of the photovoltaic (PV) panel. The smart tracker system operates at different modes to provide flexibility to accommodate different weather conditions and preference for different users. The PV panel rotates automatically based on the sun irradiance during the day while at night; the system is in ‘sleep’ mode in order to reduce the energy consumption. A computer model of the standalone solar tracker system is first modeled using MATLAB™/Simulink™. The efficiency over the fixed solar panel, the power generated and the types of PV systems to achieve the required level of efficiency can be determined before actual implementation. The experimental testing shows some agreement with the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.