Abstract

Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein–protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal β-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.