Abstract

In Dip Pen Nanolithography (DPN), arbitrary nanoscale chemical patterns can be created by the diffusion of chemicals from the tip of an atomic force microscope (AFM) probe to a surface. This paper describes the design, optimization, fabrication, and testing of an actuated multi-probe DPN array. The probe array consists of 10 thermal bimorph active probes made of silicon nitride and gold. The probes are 300 /spl mu/m long and the tips are spaced 100 /spl mu/m apart. An actuation current of 10 mA produces a tip deflection of 8 /spl mu/m, which is enough to remove individual tips from the surface independent of the adjacent probes. An analytical probe model is presented and used to optimize the design against several possible failure modes. The array is demonstrated by using it to simultaneously write 10 unique octadecanethiol patterns on a gold surface. Pattern linewidth as small as 80 nm has been created at a maximum write speed of 20 /spl mu/m/sec. By writing multiple, distinctly different patterns in parallel, this device provides a significant improvement in throughput and flexibility over conventional AFM probes in the DPN process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.