Abstract

We present design criteria for high-temperature operation in 1.3-μm multiple-quantum-well (MQW) lasers from the viewpoint of the light output power penalty, i.e., the change in the light output power at a fixed drive current with increasing temperature. It is shown that not only the characteristic temperature (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ) but also internal loss dependence on temperature (/spl gamma/) and threshold current (I/sub th/) are significant parameters for reducing the power penalty. We compare the high-temperature performance of InGaAsP-based and AlGaInAs-based MQW lasers and demonstrate that AlGaInAs-based lasers have more potential in terms of the power penalty. Furthermore, we also demonstrate that the power penalty can be reduced by introducing a buried-heterostructure (BH) structure into AlGaInAs-based lasers. From these results, we conclude that the AlGaInAs-based BH lasers are promising for high-temperature performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.