Abstract

Design of a small scale rotating fluidized bed (RFB) with diameter of 4–6cm to fluidize 40–80μm diameter particles was investigated using computational fluid dynamics (CFD). Simulations explored the impact of the following components on pressure drop and fluidized behavior of the device: particle size, particle density, outer diameter, solids loading, height, number of inlet slots, inlet slot width, angle of inlet slots, chimney diameter, chimney number of slots, chimney slot width, chimney slot angle, and position of the chimney relative to the inlets. Fluidized behavior was evaluated based on a “fluidization quality” metric yielding information about the distribution of particles in the device. Although additional work is required to elucidate design guidelines for small scale RFBs for fine particles, the initial designs evaluated in this work indicate potential for developing a fluidized bed of relatively small diameter, presenting opportunities for process intensification for numerous potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.