Abstract

Passive gamma-ray spectrometers composed of attenuation filters and integrating detection materials provide important advantages for measurements in high-radiation environments and for long-term monitoring. Each of these applications has requirements that constrain the design of the instrument, such as incident energy range of interest, sensor size and weight, readout method, and cost. The multitude of parameters in passive spectrometer design (e.g., attenuation filter material and thickness, integrating sensor type, number of pixels, reconstructed energy bin structure) results in a large design space to examine. The development of generalized design optimization tools to interrogate this space and to identify promising spectrometer designs is discussed, particularly the methods used to rapidly calculate system transfer functions and the use of genetic algorithms for design optimization. Preliminary measurements to validate the design tools are described, and example results from early design optimization efforts are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.