Abstract

Design approaches and achievements for the development of wrought TiAl alloys to be used for LPT and HPC blades are constructed. In case of Ti-Al-M1-M2 quaternary systems, conventional equivalency concept does not work for the alloy design, and a new thermodynamic database for phase diagram calculations in multi-component systems of the alloys is built by introducing the interaction parameters among four phases of β−Ti, α2−Ti3Al, α−Ti and γ−TiAl phases in the systems, in order to reproduce the experimentally determined phase diagrams. Based on the phase diagram calculations, the composition range of a unique phase transformation pathway of β+α→α→β+γ in the multi-component system can be identified, and thus model alloys with excellent hot workability even at higher strain rate and mechanical properties can be successfully proposed. It can be concluded that an introduction of bcc β phase and the morphology control through the phase transformation pathway make it possible to improve the room temperature ductility, creep and fatigue crack propagation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.