Abstract
A number of models exist for assessing encrustation on biomaterials employed as devices in the urinary tract. However, static urine models are suitable only for assessment of biomaterials residing in the bladder and the dynamic models available suffer from a number of disadvantages, notably their complexity and limitation to short-term assessment. The dynamic model described herein is a relatively simple design incorporating the ability to assess a large number of biomaterials in replicate fashion and over long periods of time. The biomaterials tested in the dynamic model conform to the urethral catheter and ureteral stent devices that experience urine flow within the urinary tract. The model was initially validated using Percuflex as a test biomaterial. The mass of calcium and magnesium, representing hydroxyapatite and struvite encrustation, respectively, on Percuflex was detected by atomic absorption spectrometry. No significant differences in encrustation levels were detected either between vessels or between biomaterial positions on any mandrel within the vessels, indicating the suitability of the dynamic model for reproducible determination of biomaterial encrustation. The dynamic model was then used to compare the encrustation of biomaterials commonly employed in urinary-tract devices, namely polyurethane, Percuflex and silicone. Calcium and magnesium levels on polyurethane and Percuflex were shown to be statistically similar, whereas silicone exhibited significantly reduced encrustation. When, subsequently, comparisons were made of biomaterial encrustation between the dynamic model and a static model, calcium and magnesium levels arising from the latter model were significantly higher on each of the biomaterials. However, the same rank order of encrustation resistance was observed for the biomaterials in both models, with silicone performing better than polyurethane or Percuflex. The prediction of in-vivo performance based on in-vitro models of encrustation is often difficult, although the model described provides a more accurate method for assessing the potential of novel and existing biomaterials for use in urinary medical devices requiring flow of urine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.