Abstract
A composite grid-stiffened structure concept was selected for the payload fairing of the Minotaur launch vehicle. Compared to sandwich structures, this concept has an advantage of smaller manufacturing costs and lighter weight. To reduce weight the skin pockets are allowed to buckle visibly up to about 0.5 cm peak displacement. Various failure modes were examined for the composite grid-stiffened structure. The controlling criterion for this design was a joint failure in tension between the ribs and skin of the structure. The identification of this failure mechanism and the assessment of bounding strains required to control it required extensive test and analysis effort. Increasing skin thickness to control skin buckling resulted in reduced strains between the skin and ribs. Following the identification of the relevant failure criteria, a final design for the fairing was generated. The resulting 6 m tall fairing was constructed of a tow-placed carbon fiber composite grid structure that was over-wrapped to create a laminated skin. Upon completion of curing and machining, the fairing was cut in half to create the classic “clam-shell” fairing. Static qualification testing demonstrated the structural integrity of the fairing, thereby proving the design and manufacturing process. Loads were applied incrementally in a static loading scenario. The applied load envelope exceeded worst-case dynamic flight conditions with an added safety factor of 25%. At peak load the fairing maintained structural integrity while remaining within the required displacement envelope for payload safety. Data were collected during the test from a variety of sensors including traditional displacement transducers and strain gages. In addition, full field displacement was monitored at critically loaded fairing sections by means of digital photogrammetry. This paper summarizes the test results, presents the overall performance of the fairing under the test loads, correlates test response and analysis, and identifies lessons learned. Work continues at the Air Force Research Laboratory (AFRL) and Boeing to identify means of further controlling tensile failure of the un-reinforced polymer bonded joint between the ribs and skin. Stiffening of skin adjacent to the joints and introduction of lightweight foam jackets at the interior of the fairing both show promise of delaying joint failure to higher loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.