Abstract

We have examined the stabilization of higher-order noncanonical G-quadruplex (G4) DNA structures formed by the G-rich sequences in the promoter region of oncogenes such as c-MYC, c-KIT, VEGF and BCl2 by newly synthesized, novel nitrogen-containing aromatics conjugated to xanthone moiety. Compounds with N-heterocyclic substituents such as pyridine (XNiso), benzimidazole (XBIm), quinoxaline (XQX) and fluorophore dansyl (XDan) showed greater effectiveness in stabilizing the G4 DNA as well as selective cytotoxicity for cancer cells (mainly A549) over normal cells both in terms of UV-Vis spectral titrations and cytotoxicity assay. Both fluorescence spectral titrimetric measurements and circular dichroism (CD) melting experiments further substantiated the G4 stabilization phenomenon by these small-molecular ligands. In addition, these compounds could induce the formation of parallel G4 structures in the absence of any added salt condition in Tris⋅HCl buffer at 25 °C. In a polymerase stop assay, the formation of stable G4 structures in the promoter of oncogenes and halting of DNA synthesis in the presence of the above-mentioned compounds was demonstrated by using oncogene promoter as the DNA synthesis template. Apoptosis-mediated cell death of the cancer cells was proved by Annexin V-PI dual staining assay and cell-cycle arrest occurred in the S phase of the cell cycles. The plausible mode of binding involves the stacking of the xanthone core on the G4 DNA plane with the possibility of interaction with the 5'-overhang as indicated by molecular dynamics simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.